
Shared Libraries

Loading shared libraries and classes dynamically
at runtime.

Overview

> Shared Libraries

> The Class Loader

Shared Libraries

> Most modern platforms provide facilities to load program
modules in the form of shared libraries (dynamic link libraries) at
runtime.

> Windows provides a LoadLibrary() function, most Unix platforms
have dlopen().

> To use a dynamically loaded shared library, an entry point
(address of a function) into the library must be found. The
address can then be casted to an appropriate function pointer,
and the function can be called.

The SharedLibrary Class

> Poco::SharedLibrary is POCO's interface to the operating system's
dynamic linker/loader.

> #include "Poco/SharedLibrary.h"

> Poco::SharedLibrary provides low-level functions for loading a
shared library, for looking up the address of a symbol, and for
unloading a shared library.

SharedLibrary Functions

> void load(const std::string& path)
loads the shared library from the given path

> void unload()
unloads the shared library

> bool hasSymbol(const std::string& name)
returns true if the library contains a symbol with the given name

> void* getSymbol(const std::string& name)
returns the address of the symbol with the given name. For a
function, this is the entry point of the function. To call the
function, cast to a function pointer and call through it.

// TestLibrary.cpp

#include <iostream>

#if defined(_WIN32)
#define LIBRARY_API __declspec(dllexport)

#else
#define LIBRARY_API

#endif

extern "C" void LIBRARY_API hello();

void hello()
{

std::cout << "Hello, world!" << std::endl;
}

// LibraryLoaderTest.cpp

#include "Poco/SharedLibrary.h"

using Poco::SharedLibrary;

typedef void (*HelloFunc)(); // function pointer type

int main(int argc, char** argv)
{

std::string path("TestLibrary");
path.append(SharedLibrary::suffix()); // adds ".dll" or ".so"

SharedLibrary library(path); // will also load the library

HelloFunc func = (HelloFunc) library.getSymbol("hello");

func();

library.unload();

return 0;
}

> Poco::ClassLoader is POCO's high level interface for loading
classes from shared libraries. It is well suited for implementing
typical plug-in architectures.

> #include "Poco/ClassLoader.h"

> All classes loaded with a specific class loader must be subclasses
of a common base class. Poco::ClassLoader is a class template
that must be instantiated for the base class.

> A base class is necessary because the application loading a
plugin needs an interface to access it.

The Class Loader

The Class Loader (cont'd)

> A shared library that is used with the class loader can only export
classes that have a common base class.

> However, this is not really a restriction, because the exported
class can be a factory for objects of arbitrary classes.

> A shared library used with the class loader exports a Manifest
describing all classes exported by the library.

> Furthermore, the shared library must export specific functions
that are used by the class loader.

> POCO provides macros that automate the implementation of
these functions.

Manifest and MetaObject

> A library's Manifest maintains a list of all classes contained in a
dynamically loadable class library.

> It manages that information as a collection of meta objects.

> A MetaObject manages the lifetime of objects of a given class. It
is used to create instances of a class, and to delete them.

> As a special feature, class libraries can export singletons.

The MetaObject Class

> MetaObject<Class, Base> is a class template, instantiated with
the class it maintains, and its lowest base class.

> MetaObject<Class, Base> is derived from
AbstractMetaObject<Base>.

> A MetaObject can be used to create new instances of a class
(unless the class is exported as a singleton).

> Like a AutoReleasePool, a MetaObject can take care of no longer
needed objects.

> A MetaObject can manage singletons.

The MetaObject Class (cont'd)

> const char* name()
returns the name of the class

> Base* create() const
creates a new instance of Class, unless it's a singleton.

> Base& instance() const
returns a reference to the one and only instance of a singleton.

> bool canCreate() const
returns true if new instances can be created (false if the class is a
singleton).

The MetaObject Class (cont'd)

> Base* autoDelete(Base* pObject)
give ownership of pObject to the MetaObject. The MetaObject
will delete all object it owns when it's destroyed.

> bool isAutoDelete(Base* pObject)
returns true if the MetaObject owns pObject, false otherwise.

> void destroy(Base* pObject)
if the MetaObject owns pObject, it will be immediately deleted.

The MetaSingletonClass

> This is a sister class of MetaObject used for managing singletons.

> It has the same interface as MetaObject.

The Manifest Class

> Poco::Manifest basically is a collection of meta objects.

> #include "Poco/Manifest.h"

> Poco::Manifest::Iterator is used to iterate over its meta objects.

> Manifest::Iterator find(const std::string& className)
returns an iterator pointing to the meta object for the given class,
or an end iterator if the class is not found.

> Manifest::Iterator begin() const
Manifest::Iterator end() const
return the begin, and end iterator, respectively.

Writing a Class Library

> For a class library to work with the class loader, it must export a
manifest.

> The class library must provide a function
bool pocoBuildManifest(ManifestBase* pManifest)
that builds a manifest for the library.

> The Poco/ClassLibrary.h header file provides macros to
automatically implement this function for a class library.

> Optionally, a class library can export an initialization and a clean
up function.

Writing a Class Library (cont'd)

> These macros are used as follows:
POCO_BEGIN_MANIFEST(MyBaseClass)
 POCO_EXPORT_CLASS(MyFirstClass)
 POCO_EXPORT_CLASS(MySecondClass)
 POCO_EXPORT_SINGLETON(MySingleton)
POCO_END_MANIFEST

> A class library can export a setup and a cleanup function:
void pocoInitializeLibrary()
void pocoUninitializeLibrary()
which will be called by the class loader, if present.

The Class Loader (again)

> A ClassLoader maintains a collection of class libraries, as well as
their manifests.

> void loadLibrary(const std::string& path)
loads a class library into memory and runs the set up function, if
it's present.

> void unloadLibrary(const std::string& path)
unloads a class library after running the clean up function.

> Never unload a class library if there are still objects
from this library around in memory. !

The Class Loader (again, cont'd)

> const Meta* findClass(const std::string& className) const
looks for the meta object for the given class in all loaded libraries.
Returns a pointer to the meta object if found, null otherwise.

> const Meta& classFor(const std::string& className)
similar to findClass(), but throws a NotFoundException if the class
is not known.

> Base* create(const std::string& className)
creates a new instance of a class or throws a NotFoundException
if the class is unknown.

The Class Loader (again, cont'd)

> Base& instance(const std::string& className)
returns a reference to the only instance of a singleton class or
throws a NotFoundException if the class is unknown.

> Iterator begin() const
Iterator end() const
return a begin/end iterator for iterating over the manifests of all
loaded libraries. Dereferencing the iterator will return a pointer to
a std::pair containing the path of the class library and a pointer to
its manifest.

> Please see the reference documentation for other member
functions.

// AbstractPlugin.h
//
// This is used both by the class library and by the application.

#ifndef AbstractPlugin_INCLUDED
#define AbstractPlugin_INCLUDED

class AbstractPlugin
{
public:

AbstractPlugin();
virtual ~AbstractPlugin();
virtual std::string name() const = 0;

};

#endif // AbstractPlugin.h

// AbstractPlugin.cpp
//
// This is used both by the class library and by the application.

#include "AbstractPlugin.h"

AbstractPlugin::AbstractPlugin()
{
}

AbstractPlugin::~AbstractPlugin()
{
}

// PluginLibrary.cpp

#include "AbstractPlugin.h"
#include "Poco/ClassLibrary.h"
#include <iostream>

class PluginA: public AbstractPlugin
{
public:

std::string name() const
{

return "PluginA";
}

};

class PluginB: public AbstractPlugin
{
public:

std::string name() const
{

return "PluginB";
}

};

POCO_BEGIN_MANIFEST(AbstractPlugin)
POCO_EXPORT_CLASS(PluginA)
POCO_EXPORT_CLASS(PluginB)

POCO_END_MANIFEST

// optional set up and clean up functions

void pocoInitializeLibrary()
{

std::cout << "PluginLibrary initializing" << std::endl;
}

void pocoUninitializeLibrary()
{

std::cout << "PluginLibrary uninitializing" << std::endl;
}

// main.cpp

#include "Poco/ClassLoader.h"
#include "Poco/Manifest.h"
#include "AbstractPlugin.h"
#include <iostream>

typedef Poco::ClassLoader<AbstractPlugin> PluginLoader;
typedef Poco::Manifest<AbstractPlugin> PluginManifest;

int main(int argc, char** argv)
{

PluginLoader loader;

std::string libName("PluginLibrary");
libName += Poco::SharedLibrary::suffix(); // append .dll or .so

loader.loadLibrary(libName);

PluginLoader::Iterator it(loader.begin());
PluginLoader::Iterator end(loader.end());
for (; it != end; ++it)
{

std::cout << "lib path: " << it->first << std::endl;
PluginManifest::Iterator itMan(it->second->begin());
PluginManifest::Iterator endMan(it->second->end());
for (; itMan != endMan; ++itMan)

std::cout << itMan->name() << std::endl;
}

AbstractPlugin* pPluginA = loader.create("PluginA");
AbstractPlugin* pPluginB = loader.create("PluginB");

std::cout << pPluginA->name() << std::endl;
std::cout << pPluginB->name() << std::endl;

loader.classFor("PluginA").autoDelete(pPluginA);
delete pPluginB;

loader.unloadLibrary(libName);

return 0;
}

Copyright © 2006-2010 by Applied Informatics Software Engineering GmbH.
Some rights reserved.

www.appinf.com | info@appinf.com
T +43 4253 32596 | F +43 4253 32096

