
The Hashing Framework

Finding things fast.



Overview

> Motivation

> Implementations

> Performance



Motivation

> std::map and std::set give a performance guarantee of O(log n)

> collections using hashing can show a better real-world 
performance than their STL counter parts



Implementations

> LinearHashTable

> HashSet

> HashMap

> HashTable (deprecated)

> SimpleHashTable (deprecated)



LinearHashTable

> implements the basic data structure used by HashMap and 
HashSet
#include “Poco/LinearHashTable.h”

> user must provide a hash function
Poco/Hash.h contains predefined ones for integral numbers and 
std::string
Poco::LinearHashTable<Key, Hash = Poco::Hash<Key>

> performs linear hashing, no performance deterioration with 
inserts/deletes (no rehashing needed when out of data) 



HashMap

> std::map like functionality
#include “Poco/HashMap.h”

> use like a map
same interface, even iterators are there



HashSet

> std::set like functionality
#include “Poco/HashSet.h”

> use like a set
same interface, even iterators are there



Deprecated Classes

> HashTable, SimpleHashTable

> uses Poco::HashFunction !

> no STL like interface

> no iterator

> simpler but faster



SimpleHashTable (deprecated)

> the fastest implementation
#include “Poco/SimpleHashTable.h”

> limitations

> no remove

> static fixed size

> when inserting into a full table: exception

> simple overflow handling: scan for next free hole

> wastes memory: capacity > elemCount



HashTable (deprecated)

> #include “Poco/HashTable.h”

> uses overflow maps to handle collisions

> when created with a size of 1 it is a map

> supports remove operations



Recommendations

> use HashMap/HashSet where possible

> don’t use HashTable at all 

> it is only slightly faster than HashMap

> when your application depends on every single CPU cycle and 
you need map functionality, then and only then, use 
SimpleHashTable

> approx 30 % faster than HashMap



Performance

> always depends on the usage scenario and the size of the data

> hashing is approximately two times faster than the STL 
containers

> SimpleHashTable adds another 30 % when configured 
properly.

> the larger the collection the higher are the performance gains



Copyright © 2006-2010 by Applied Informatics Software Engineering GmbH.
Some rights reserved.

www.appinf.com | info@appinf.com
T +43 4253 32596 | F +43 4253 32096


