
Streams

Working with the various stream classes in POCO.

Overview

> Encoding and Decoding (Base64, HexBinary)

> Data Compression with zlib

> Binary I/O

> Utility Streams
(CountingStream, LineEndingConverter, TeeStream, NullStream)

> FileStream

> Creating Your Own Streams

The POCO Stream Classes

> POCO provides a variety of stream classes, compatible with
standard C++ IOStreams.

> Most POCO stream classes are implemented as filters, which
means that they do not write to or read from a device, but rather
from another stream they are connected to.

> A few utility classes in POCO make it easy for you to create your
own stream buffer and stream classes.

Encoding and Decoding

> POCO provides filter stream classes for encoding and decoding
data in Base64 and HexBinary format.

> Both Base64 and HexBinary can be used to encode arbitrary
binary data using only printable ASCII characters.

> Base64 uses digits, upper and lowercase characters, as well as '+'
and '-' to encode groups of 6 bits. The encoded data takes by a
factor 1.33 as much space as the original data.

> HexBinary uses digits and the characters 'A' to 'F' to encode
groups of 4 bit. The encoded data takes twice the space.

> See RFC 4648 for details.

Encoding and Decoding (cont'd)

> Poco::Base64Encoder #include "Poco/Base64Encoder.h"
Poco::HexBinaryEncoder #include "Poco/HexBinaryEncoder.h"
are output streams that must be constructed with another
output stream, where Base64/HexBinary-encoded data is
written to.

> Poco::Base64Decoder #include "Poco/Base64Decoder.h"
Poco::HexBinaryDecoder #include "Poco/HexBinaryDecoder.h"
are input streams that must be constructed with another input
stream, where Base64/HexBinary-encoded data is read from.

#include "Poco/Base64Encoder.h"
#include <iostream>

using Poco::Base64Encoder;

int main(int argc, char** argv)
{

Base64Encoder encoder(std::cout);

encoder << "Hello, world!";

return 0;
}

> POCO provides filter stream wrappers for zlib, supporting
"deflate" and "gzip" style compression.

> Input and output streams are provided for compression
(deflating) and expansion (inflating).

> Four stream classes (two input streams and two output streams)
are available.

ZLib Compression

ZLib Stream Classes

DeflatingOutputStream ostream

raw
data

compressed
data

DeflatingInputStreamistream

InflatingInputStream istream

ostream InflatingOutputStream

ZLib Stream Classes (cont'd)

> Deflating Streams

> #include "Poco/DeflatingStream.h"

> Poco::DeflatingInputStream

> Poco::DeflatingOutputStream

> Inflating Streams

> #include "Poco/InflatingStream.h"

> Poco::InflatingInputStream

> Poco::InflatingOutputStream

ZLib Stream Classes (cont'd)

> Poco::DeflatingInputStream
Poco::DeflatingOutputStream
is constructed with another input/output stream and an optional
argument specifying the compression type:
Poco::DeflatingStreamBuf::STREAM_ZLIB (deflate/zlib type)
Poco::DeflatingStreamBuf::STREAM_GZIP (gzip type)

> Poco::InflatingInputStream
Poco::InflatingOutputStream
is constructed with another input/output stream and an optional
argument specifying the compression type:
Poco::InflatingStreamBuf::STREAM_ZLIB (deflate/zlib type)
Poco::InflatingStreamBuf::STREAM_GZIP (gzip type)

#include "Poco/DeflatingStream.h"
#include <fstream>

using Poco::DeflatingOutputStream;
using Poco::DeflatingStreamBuf;

int main(int argc, char** argv)
{

std::ofstream ostr("test.gz", std::ios::binary);
DeflatingOutputStream deflater(ostr, DeflatingStreamBuf::STREAM_GZIP);

deflater << "Hello, world!";

// ensure buffers get flushed before connected stream is closed
deflater.close();
ostr.close();

return 0;
}

> Poco::CountingInputStream and Poco::CountingOutputStream
count the number of characters and lines in a file. They also keep
track of the current line number and column position.

> #include "Poco/CountingStream.h"

Counting Streams

Line Ending Conversion

> Poco::InputLineEndingConverter and
Poco::OutputLineEndingConverter converts line endings in text
files between Unix (LF), DOS/Windows (CRLF) and Macintosh (CR)
format.

> #include "Poco/LineEndingConverter.h"

> Poco::LineEnding defines line ending formats:
NEWLINE_DEFAULT (the default for the current platform)
NEWLINE_CR (Macintosh line endings)
NEWLINE_CRLF (DOS/Windows line endings)
NEWLINE_LF (Unix line endings)

Splitting Streams

> Poco::TeeInputStream and Poco::TeeOutputStream copy all
characters going through them (read or written) to one or more
output streams.

> #include "Poco/TeeStream.h"

> These streams are quite useful for debugging purposes.

> void addStream(std::ostream& ostr)
adds an output stream to a Poco::TeeInputStream or
Poco::TeeOutputStream.

#include "Poco/TeeStream.h"
#include <iostream>
#include <fstream>

using Poco::TeeOutputStream;

int main(int argc, char** argv)
{

TeeOutputStream tee(std::cout);

std::ofstream fstr("output.txt");
tee.addStream(fstr);

tee << "Hello, world!" << std::endl;

return 0;
}

> Poco::NullOutputStream discards all data written to it.

> Poco::NullInputStream signals end-of-file for every read
operation.

> #include "Poco/NullStream.h"

The Null Stream

Writing and Reading Binary Data

> Poco::BinaryWriter is used to write the value of basic types in
binary form to an output stream, using a stream-like interface.

> #include "Poco/BinaryWriter.h"

> Poco::BinaryReader is used to read basic types in binary form
(produced by a Poco::BinaryWriter) from an input stream.

> #include "Poco/BinaryReader.h"

> Both support big endian and little endian byte order for writing
and reading, as well as automatic byte order conversions.

> These classes are useful for exchanging binary data between
systems with a different architecture.

The BinaryWriter Class

> Poco::BinaryWriter supports stream insertion operators (<<) for
all built-in C++ types, as well as C strings and std::string.

> Unsigned integers (32 and 64 bit) can be written in a special
compact 7 bit encoded format:

> The value is written out seven bits at a time, starting with the
seven least significant bits.

> The most significant bit of a byte indicates whether there are
more bytes coming.

> A value that fits into seven bits takes one storage byte.

> For a 32-bit value, at most five bytes are used.

The BinaryWriter Class (cont'd)

> void write7BitEncoded(UInt32 value)
void write7BitEncoded(UInt64 value)
writes an unsigned integer in the compact 7 bit encoded format
to the underlying output stream

> void writeRaw(const std::string& rawData)
writes rawData as is to the underlying stream

> void writeBOM()
writes a byte order mark (the 16 bit value 0xFEFF in host byte
order) to the stream. A BinaryReader uses the BOM to
automatically enable byte order conversion, if required.

BinaryWriter and Byte Order

> A BinaryWriter is constructed with an output stream, and an
optional byte order argument.

> The byte order can be one of the following:

> NATIVE_BYTE_ORDER (default)

> BIG_ENDIAN_BYTE_ORDER

> NETWORK_BYTE_ORDER

> LITTLE_ENDIAN_BYTE_ORDER

BinaryWriter Stream State

> Poco::BinaryWriter provides convenience functions to determine
or change the state of the underlying output stream.

> void flush()
flushes the underlying stream

> bool good()
returns true if the stream is okay

> bool fail()
returns the state of the stream's fail bit

> bool bad()
returns the state of the stream's bad bit

The BinaryReader Class

> Poco::BinaryReader provides stream extraction operators (>>) for
all built-in C++ types, as well as std::string.

> void read7BitEncoded(UInt32& value)
void read7BitEncoded(UInt64& value)
read an integer stored in 7 bit compressed format

> void readRaw(int length, std::string& value)
reads length bytes of raw data into value

> void readBOM()
reads a byte order mark and enables or disables automatic byte
order conversion for all data read in the future

The BinaryReader Class (cont'd)

> bool good()
returns true if the stream is okay

> bool fail()
returns the state of the stream's fail bit

> bool bad()
returns the state of the stream's bad bit

> bool eof()
returns the state of the stream's eof bit

#include "Poco/BinaryWriter.h"
#include <fstream>

using Poco::BinaryWriter;

int main(int argc, char** argv)
{

std::ofstream ostr("binary.dat", std::ios::binary);
BinaryWriter writer(ostr);

writer.writeBOM();
writer << "Hello, world!" << 42;
writer.write7BitEncoded(123);
writer << true;

return 0;
}

#include "Poco/BinaryReader.h"
#include <fstream>

using Poco::BinaryReader;

int main(int argc, char** argv)
{

std::ifstream istr("binary.dat", std::ios::binary);
BinaryReader reader(istr);

reader.readBOM();

std::string hello;
int i;
bool b;

reader >> hello >> i;
reader.read7BitEncoded(i);
reader >> b;

return 0;
}

> Poco::BinaryWriter and Poco::BinaryReader can be used to
exchange data between systems with different architectures.

> Either write the data in a fixed byte order (e.g., big endian), or use
a byte order mark and write in native byte order.

> Be careful with integers. Prefer Poco::UIntXX and Poco::IntXX to
(unsigned) short, (unsigned) int and (unsigned) long.

> For textual data, ensure that a common encoding (e.g., Latin-1 or
UTF-8) is used.

Cross-Platform Considerations

File Streams

> POCO provides stream classes for reading and writing files:
FileStream, FileInputStream, FileOutputStream

> #include "Poco/FileStream.h"

> On Windows platforms, the path passed to a File Stream is UTF-8
encoded.

> No line ending conversion is performed. File streams are always
open in binary mode. Seeking is supported.

> Use InputLineEndingConverter or OutputLineEndingConverter if
you need CR-LF conversion.

Writing Your Own Stream Classes

> POCO provides stream buffer class templates that simplify the
implementation of custom stream classes.

> Streams are implemented by first creating a stream buffer class
(streambuf), and then adding IOS, istream and ostream classes.

> The following stream buffer class templates are available:

> Poco::BasicUnbufferedStreamBuf

> Poco::BasicBufferedStreamBuf

> Poco::BasicBufferedBidirectionalStreamBuf

UnbufferedStreamBuf

> Poco::BasicUnbufferedStreamBuf is a class template that must be
instantiated for a character type.

> Poco::UnbufferedStreamBuf is an instantiation of
Poco::BasicUnbufferedStreamBuf for char.

> #include "Poco/UnbufferedStreamBuf.h"

> Poco::UnbufferedStreamBuf is the simplest way to implement a
custom stream. It does not do any buffering.

UnbufferedStreamBuf (cont'd)

> Subclasses must override the following member functions:

> int readFromDevice()
reads and returns a single (unsigned) byte. Returns
char_traits::eof() (-1) if no more data is available.

NOTE: Never return a char value directly, as char might be
signed. Always use int charToInt(char c) to convert the
character to an integer.

> int writeToDevice(char c)
writes a single byte. Returns the byte (as integer) if successful,
otherwise char_traits::eof() (-1).

!

#include "Poco/UnbufferedStreamBuf.h"
#include <ostream>
#include <cctype>

class UpperStreamBuf: public UnbufferedStreamBuf
{
public:

UpperStreamBuf(std::ostream& ostr): _ostr(ostr)
{
}

protected:
int writeToDevice(char c)
{

_ostr.put(toupper(c));
return charToInt(c);

}

private:
std::ostream& _ostr;

};

class UpperIOS: public virtual std::ios
{
public:

UpperIOS(std::ostream& ostr): _buf(ostr)
{

poco_ios_init(&_buf);
}

protected:
UpperStreamBuf _buf;

};

class UpperOutputStream: public UpperIOS, public std::ostream
{
public:
 UpperOutputStream(std::ostream& ostr):

UpperIOS(ostr),
std::ostream(&_buf)

{
}

};

int main(int argc, char** argv)
{

UpperOutputStream upper(std::cout);

upper << "Hello, world!" << std::endl;

return 0;
}

> Poco::BasicBufferedStreamBuf is a class template that must be
instantiated for a character type.

> Poco::BufferedStreamBuf is an instantiation of
Poco::BasicBufferedStreamBuf for char.

> #include "Poco/BufferedStreamBuf.h"

> An instance of Poco::BufferedStreamBuf supports either reading
or writing, but not both.

> Poco::BasicBufferedBidirectionalStreamBuf supports reading and
writing. Internally, it maintains two buffers.

> #include "Poco/BufferedBidirectionalStreamBuf.h"

Buffered Streams

Buffered Streams (cont'd)

> Subclasses of Buffered[Bidirectional]StreamBuf must override the
following member functions:

> int readFromDevice(char* buffer, std::streamsize length)
read up to length characters and place them in buffer. Return
the number of characters read, or -1 if something went wrong.

> int writeToDevice(const char* buffer, std::streamsize length)
write length bytes starting from buffer and return the number
of bytes written, or -1 if something went wrong.

Stream Buffers and Exceptions

> Exceptions thrown by stream buffers will normally be catched by
the stream class and result in the stream's bad bit being set. The
exception will not propagate; instead, the stream's bad bit will be
set.

> This behavior of a stream can be changed by calling the
exceptions() member function of a stream with true as argument.

Copyright © 2006-2010 by Applied Informatics Software Engineering GmbH.
Some rights reserved.

www.appinf.com | info@appinf.com
T +43 4253 32596 | F +43 4253 32096

