
Streams

Working with the various stream classes in POCO.



Overview

> Encoding and Decoding (Base64, HexBinary)

> Data Compression with zlib

> Binary I/O

> Utility Streams
(CountingStream, LineEndingConverter, TeeStream, NullStream)

> FileStream

> Creating Your Own Streams



The POCO Stream Classes

> POCO provides a variety of stream classes, compatible with 
standard C++ IOStreams.

> Most POCO stream classes are implemented as filters, which 
means that they do not write to or read from a device, but rather 
from another stream they are connected to.

> A few utility classes in POCO make it easy for you to create your 
own stream buffer and stream classes.



Encoding and Decoding

> POCO provides filter stream classes for encoding and decoding 
data in Base64 and HexBinary format.

> Both Base64 and HexBinary can be used to encode arbitrary 
binary data using only printable ASCII characters.

> Base64 uses digits, upper and lowercase characters, as well as '+' 
and '-' to encode groups of 6 bits. The encoded data takes by a 
factor 1.33 as much space as the original data.

> HexBinary uses digits and the characters 'A' to 'F' to encode 
groups of 4 bit. The encoded data takes twice the space.

> See RFC 4648 for details.



Encoding and Decoding (cont'd)

> Poco::Base64Encoder  #include "Poco/Base64Encoder.h"
Poco::HexBinaryEncoder #include "Poco/HexBinaryEncoder.h"
are output streams that must be constructed with another 
output stream, where Base64/HexBinary-encoded data is 
written to.

> Poco::Base64Decoder  #include "Poco/Base64Decoder.h"
Poco::HexBinaryDecoder #include "Poco/HexBinaryDecoder.h"
are input streams that must be constructed with another input 
stream, where Base64/HexBinary-encoded data is read from.



#include "Poco/Base64Encoder.h"
#include <iostream>

using Poco::Base64Encoder;

int main(int argc, char** argv)
{

Base64Encoder encoder(std::cout);

encoder << "Hello, world!";

return 0;
}



> POCO provides filter stream wrappers for zlib, supporting 
"deflate" and "gzip" style compression.

> Input and output streams are provided for compression 
(deflating) and expansion (inflating).

> Four stream classes (two input streams and two output streams) 
are available.

ZLib Compression



ZLib Stream Classes
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ZLib Stream Classes (cont'd)

> Deflating Streams

> #include "Poco/DeflatingStream.h"

> Poco::DeflatingInputStream

> Poco::DeflatingOutputStream

> Inflating Streams

> #include "Poco/InflatingStream.h"

> Poco::InflatingInputStream

> Poco::InflatingOutputStream



ZLib Stream Classes (cont'd)

> Poco::DeflatingInputStream
Poco::DeflatingOutputStream
is constructed with another input/output stream and an optional 
argument specifying the compression type:
Poco::DeflatingStreamBuf::STREAM_ZLIB (deflate/zlib type)
Poco::DeflatingStreamBuf::STREAM_GZIP (gzip type)

> Poco::InflatingInputStream
Poco::InflatingOutputStream
is constructed with another input/output stream and an optional 
argument specifying the compression type:
Poco::InflatingStreamBuf::STREAM_ZLIB (deflate/zlib type)
Poco::InflatingStreamBuf::STREAM_GZIP (gzip type)



#include "Poco/DeflatingStream.h"
#include <fstream>

using Poco::DeflatingOutputStream;
using Poco::DeflatingStreamBuf;

int main(int argc, char** argv)
{

std::ofstream ostr("test.gz", std::ios::binary);
DeflatingOutputStream deflater(ostr, DeflatingStreamBuf::STREAM_GZIP);

deflater << "Hello, world!";

// ensure buffers get flushed before connected stream is closed
deflater.close();
ostr.close();

return 0;
}



> Poco::CountingInputStream and Poco::CountingOutputStream 
count the number of characters and lines in a file. They also keep 
track of the current line number and column position.

> #include "Poco/CountingStream.h"

Counting Streams



Line Ending Conversion

> Poco::InputLineEndingConverter and 
Poco::OutputLineEndingConverter converts line endings in text 
files between Unix (LF), DOS/Windows (CRLF) and Macintosh (CR) 
format.

> #include "Poco/LineEndingConverter.h"

> Poco::LineEnding defines line ending formats:
NEWLINE_DEFAULT (the default for the current platform)
NEWLINE_CR (Macintosh line endings)
NEWLINE_CRLF (DOS/Windows line endings)
NEWLINE_LF (Unix line endings)



Splitting Streams

> Poco::TeeInputStream and Poco::TeeOutputStream copy all 
characters going through them (read or written) to one or more 
output streams.

> #include "Poco/TeeStream.h"

> These streams are quite useful for debugging purposes.

> void addStream(std::ostream& ostr)
adds an output stream to a Poco::TeeInputStream or 
Poco::TeeOutputStream.



#include "Poco/TeeStream.h"
#include <iostream>
#include <fstream>

using Poco::TeeOutputStream;

int main(int argc, char** argv)
{

TeeOutputStream tee(std::cout);

std::ofstream fstr("output.txt");
tee.addStream(fstr);

tee << "Hello, world!" << std::endl;

return 0;
}



> Poco::NullOutputStream discards all data written to it.

> Poco::NullInputStream signals end-of-file for every read 
operation.

> #include "Poco/NullStream.h"

The Null Stream



Writing and Reading Binary Data

> Poco::BinaryWriter is used to write the value of basic types in 
binary form to an output stream, using a stream-like interface.

> #include "Poco/BinaryWriter.h"

> Poco::BinaryReader is used to read basic types in binary form 
(produced by a Poco::BinaryWriter) from an input stream.

> #include "Poco/BinaryReader.h"

> Both support big endian and little endian byte order for writing 
and reading, as well as automatic byte order conversions.

> These classes are useful for exchanging binary data between 
systems with a different architecture.



The BinaryWriter Class

> Poco::BinaryWriter supports stream insertion operators (<<) for 
all built-in C++ types, as well as C strings and std::string.

> Unsigned integers (32 and 64 bit) can be written in a special 
compact 7 bit encoded format:

> The value is written out seven bits at a time, starting with the 
seven least significant bits.

> The most significant bit of a byte indicates whether there are 
more bytes coming.

> A value that fits into seven bits takes one storage byte.

> For a 32-bit value, at most five bytes are used.



The BinaryWriter Class (cont'd)

> void write7BitEncoded(UInt32 value)
void write7BitEncoded(UInt64 value)
writes an unsigned integer in the compact 7 bit encoded format 
to the underlying output stream

> void writeRaw(const std::string& rawData)
writes rawData as is to the underlying stream

> void writeBOM()
writes a byte order mark (the 16 bit value 0xFEFF in host byte 
order) to the stream. A BinaryReader uses the BOM to 
automatically enable byte order conversion, if required.



BinaryWriter and Byte Order

> A BinaryWriter is constructed with an output stream, and an 
optional byte order argument.

> The byte order can be one of the following:

> NATIVE_BYTE_ORDER (default)

> BIG_ENDIAN_BYTE_ORDER

> NETWORK_BYTE_ORDER

> LITTLE_ENDIAN_BYTE_ORDER



BinaryWriter Stream State

> Poco::BinaryWriter provides convenience functions to determine 
or change the state of the underlying output stream.

> void flush()
flushes the underlying stream

> bool good()
returns true if the stream is okay

> bool fail()
returns the state of the stream's fail bit

> bool bad()
returns the state of the stream's bad bit



The BinaryReader Class

> Poco::BinaryReader provides stream extraction operators (>>) for 
all built-in C++ types, as well as std::string.

> void read7BitEncoded(UInt32& value)
void read7BitEncoded(UInt64& value)
read an integer stored in 7 bit compressed format

> void readRaw(int length, std::string& value)
reads length bytes of raw data into value

> void readBOM()
reads a byte order mark and enables or disables automatic byte 
order conversion for all data read in the future



The BinaryReader Class (cont'd)

> bool good()
returns true if the stream is okay

> bool fail()
returns the state of the stream's fail bit

> bool bad()
returns the state of the stream's bad bit

> bool eof()
returns the state of the stream's eof bit



#include "Poco/BinaryWriter.h"
#include <fstream>

using Poco::BinaryWriter;

int main(int argc, char** argv)
{

std::ofstream ostr("binary.dat", std::ios::binary);
BinaryWriter writer(ostr);

writer.writeBOM();
writer << "Hello, world!" << 42;
writer.write7BitEncoded(123);
writer << true;

return 0;
}



#include "Poco/BinaryReader.h"
#include <fstream>

using Poco::BinaryReader;

int main(int argc, char** argv)
{

std::ifstream istr("binary.dat", std::ios::binary);
BinaryReader reader(istr);

reader.readBOM();

std::string hello;
int i;
bool b;

reader >> hello >> i;
reader.read7BitEncoded(i);
reader >> b;

return 0;
}



> Poco::BinaryWriter and Poco::BinaryReader can be used to 
exchange data between systems with different architectures.

> Either write the data in a fixed byte order (e.g., big endian), or use 
a byte order mark and write in native byte order.

> Be careful with integers. Prefer Poco::UIntXX and Poco::IntXX to 
(unsigned) short, (unsigned) int and (unsigned) long.

> For textual data, ensure that a common encoding (e.g., Latin-1 or 
UTF-8) is used.

Cross-Platform Considerations



File Streams

> POCO provides stream classes for reading and writing files:
FileStream, FileInputStream, FileOutputStream

> #include "Poco/FileStream.h"

> On Windows platforms, the path passed to a File Stream is UTF-8 
encoded.

> No line ending conversion is performed. File streams are always 
open in binary mode. Seeking is supported.

> Use InputLineEndingConverter or OutputLineEndingConverter if 
you need CR-LF conversion.



Writing Your Own Stream Classes

> POCO provides stream buffer class templates that simplify the 
implementation of custom stream classes.

> Streams are implemented by first creating a stream buffer class 
(streambuf), and then adding IOS, istream and ostream classes.

> The following stream buffer class templates are available:

> Poco::BasicUnbufferedStreamBuf

> Poco::BasicBufferedStreamBuf

> Poco::BasicBufferedBidirectionalStreamBuf



UnbufferedStreamBuf

> Poco::BasicUnbufferedStreamBuf is a class template that must be 
instantiated for a character type.

> Poco::UnbufferedStreamBuf is an instantiation of 
Poco::BasicUnbufferedStreamBuf for char.

> #include "Poco/UnbufferedStreamBuf.h"

> Poco::UnbufferedStreamBuf is the simplest way to implement a 
custom stream. It does not do any buffering.



UnbufferedStreamBuf (cont'd)

> Subclasses must override the following member functions:

> int readFromDevice()
reads and returns a single (unsigned) byte. Returns 
char_traits::eof() (-1) if no more data is available.

NOTE: Never return a char value directly, as char might be 
signed. Always use int charToInt(char c) to convert the 
character to an integer.

> int writeToDevice(char c)
writes a single byte. Returns the byte (as integer) if successful, 
otherwise char_traits::eof() (-1).

!



#include "Poco/UnbufferedStreamBuf.h"
#include <ostream>
#include <cctype>

class UpperStreamBuf: public UnbufferedStreamBuf
{
public:

UpperStreamBuf(std::ostream& ostr): _ostr(ostr)
{
}

protected:
int writeToDevice(char c)
{

_ostr.put(toupper(c));
return charToInt(c);

}

private:
std::ostream& _ostr;

};



class UpperIOS: public virtual std::ios
{
public:

UpperIOS(std::ostream& ostr): _buf(ostr)
{

poco_ios_init(&_buf);
}

protected:
UpperStreamBuf _buf;

};

class UpperOutputStream: public UpperIOS, public std::ostream
{
public:
 UpperOutputStream(std::ostream& ostr):

UpperIOS(ostr),
std::ostream(&_buf)

{
}

};



int main(int argc, char** argv)
{

UpperOutputStream upper(std::cout);

upper << "Hello, world!" << std::endl;

return 0;
}



> Poco::BasicBufferedStreamBuf is a class template that must be 
instantiated for a character type.

> Poco::BufferedStreamBuf is an instantiation of 
Poco::BasicBufferedStreamBuf for char.

> #include "Poco/BufferedStreamBuf.h"

> An instance of Poco::BufferedStreamBuf supports either reading 
or writing, but not both.

> Poco::BasicBufferedBidirectionalStreamBuf supports reading and 
writing. Internally, it maintains two buffers.

> #include "Poco/BufferedBidirectionalStreamBuf.h"

Buffered Streams



Buffered Streams (cont'd)

> Subclasses of Buffered[Bidirectional]StreamBuf must override the 
following member functions:

> int readFromDevice(char* buffer, std::streamsize length)
read up to length characters and place them in buffer. Return 
the number of characters read, or -1 if something went wrong.

> int writeToDevice(const char* buffer, std::streamsize length)
write length bytes starting from buffer and return the number 
of bytes written, or -1 if something went wrong.



Stream Buffers and Exceptions

> Exceptions thrown by stream buffers will normally be catched by 
the stream class and result in the stream's bad bit being set. The 
exception will not propagate; instead, the stream's bad bit will be 
set.

> This behavior of a stream can be changed by calling the 
exceptions() member function of a stream with true as argument.
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