Processes

Creating and getting information about processes.

A

appliedinformatics

Overview

Processes
Pipes

Inter-Process Synchronization

V V. V V

Shared Memory

The Process Class

— POCO provides the Poco::Process class that allows you to:
> get some information about the current process
—> start a new process
~> terminate another process

> #include "Poco/Process.h"

> All methods of Poco::Process are static.

Getting Information About a Process

> Process::PID Process::id()
returns the process ID of the current thread. Process:ID is a

platform dependent integer type.

> void Process:times(long& userTime, long& kernelTime)
returns the number of seconds the current process has spent
executing in user mode, and kernel mode, respectively.

Creating a Process

> ProcessHandle Process::launch(
const std::string& path, const std::vector<std::string>& args)
creates a new process by launching the executable specified by
path and passing it the command line arguments given in args.

—> Poco:ProcessHandle has two member functions:

> Process:PID ProcessHandle::id() const
returns the process ID of the newly created process.

> int wait() const
waits for the process to terminate and returns the exit code of

the process.

Creating a Process With 1/O Redirection

> ProcessHandle Process::launch(
const std::string& path, const std::vector<std::string>& args,
Pipe* inPipe, Pipe™ outPipe, Pipe* errPipe)
creates a new process by launching the executable specified by
path and passing it the command line arguments given in args.

> Pointers to Poco::Pipe objects for the new process' standard

input, standard output and standard error channel can be
passed. If a non-null pointer is passed, the corresponding

channel will be redirected to the pipe.

~> The same Pipe instance can be used for outPipe and errPipe.

Working with Pipes

~ You usually do not work with Pipe objects directly. Although
you'll have to create instances of Pipe, for writing and reading
data from a pipe you use the Poco::PipeOutputStream and
Poco::PipelnputStream classes.

> #include "Poco/PipeStream.h"

> A Pipe is a unidirectional (half-duplex) communication channel,
which means that data only flows in one direction.

~ You can either read from a Pipe, or write to a Pipe, but not both
with one instance.

#include "Poco/Process.h"
#include "Poco/PipeStream.h”
#include "Poco/StreamCopier.h"
#include <fstream>

using Poco::Process;
using Poco::ProcessHandle;

int main(int argc, char** argv)

{
std::string cmd("/bin/ps") ;
std: :vector<std::string> args;
args.push _back("-ax");
Poco::Pipe outPipe;
ProcessHandle ph = Process::launch(cmd, args, 0, &outPipe, 0);
Poco: :PipelnputStream istr(outPipe);
std::ofstream ostr("processes.txt");
Poco::StreamCopier: :.copyStream(istr, ostr);
return 0;

}

Inter Process Synchronization

— POCO provides two primitives for inter process synchronization:
> Poco:NamedMutex (#include "Poco/NamedMutex.h")
> Poco:NamedEvent (#include "Poco/NamedEvent.h")

> Both are similar to the thread synchronization primitives
Poco::Mutex and Poco::Event.

> Both have a name, which is used to refer to the same operating
system managed mutex or event object from different processes.
The name must be passed to the constructor.

NamedMutex Operations

> Poco:NamedMutex supports the same operations as
Poco::Mutex:

> void NamedMutex::lock()
> bool NamedMutex:: tryLock()
> void NamedMutex:: unlock()

> There also is a NamedMutex::ScopedLock available.

NamedEvent Operations

> Poco:NamedEvent only supports the following operations:

> void NamedEvent::set()

> void NamedEvent:wait()

Semantics

> Poco:NamedMutex and Poco::NamedEvent are merely references
to synchronization primitives managed by the operating system.

> This differs from the thread synchronization primitives:

— There can never be two separate Poco:Mutex instances that
refer to the same operating system mutex object.

~> However, there can be multiple Poco:NamedMutex objects

referencing the same operating system mutex object.
Otherwise, inter thread synchronization would not be
possible.

Shared Memory

> Shared Memory support in POCO is implemented by the
Poco::SharedMemory class.

> #include "Poco/SharedMemory.h"
> A shared memory region can be created in two ways:
> anamed memory region of a certain size can be created

~> afile can be mapped into a shared memory region

.
The SharedMemory Class

> The begin() and end() member functions return a pointer to the

begin and one-past-end of the shared memory region,
respectively.

> The SharedMemory class is implemented using the Pimpl
(handle/body) idiom together with reference counting, thus
SharedMemory objects can be assigned and copied (although
nothing is copied physically).

// Map a file into memory

#include "Poco/SharedMemory.h"
#include "Poco/File.h"

using Poco::SharedMemory;
using Poco::File;

int main(int argc, char** argv)

{
File f("MapIntoMemory.dat");
SharedMemory mem(f, SharedMemory::AM READ); // read-only access
for (char* ptr = mem.begin(); ptr != mem.end(); ++ptr)
{
//
}
return 0;
}

// Share a memory region of 1024 bytes
#include "Poco/SharedMemory.h"

using Poco::SharedMemory;

int main(int argc, char** argv)

{

SharedMemory mem("MySharedMemory", 1024,
SharedMemory::AM READ | SharedMemory::AM WRITE) ;

for (char* ptr = mem.begin(); ptr != mem.end(); ++ptr)
{
*ptr = 0;
}
return 0O;

appLiedinformatics

Copyright © 2006-2010 by Applied Informatics Software Engineering GmbH.
Some rights reserved.

www.appinf.com | info@appinf.com
T +43 4253 32596 | F +43 4253 32096

@) OO

BY

ND

