
Processes

Creating and getting information about processes.

Overview

> Processes

> Pipes

> Inter-Process Synchronization

> Shared Memory

The Process Class

> POCO provides the Poco::Process class that allows you to:

> get some information about the current process

> start a new process

> terminate another process

> #include "Poco/Process.h"

> All methods of Poco::Process are static.

Getting Information About a Process

> Process::PID Process::id()
returns the process ID of the current thread. Process::ID is a
platform dependent integer type.

> void Process::times(long& userTime, long& kernelTime)
returns the number of seconds the current process has spent
executing in user mode, and kernel mode, respectively.

Creating a Process

> ProcessHandle Process::launch(
const std::string& path, const std::vector<std::string>& args)
creates a new process by launching the executable specified by
path and passing it the command line arguments given in args.

> Poco::ProcessHandle has two member functions:

> Process::PID ProcessHandle::id() const
returns the process ID of the newly created process.

> int wait() const
waits for the process to terminate and returns the exit code of
the process.

Creating a Process With I/O Redirection

> ProcessHandle Process::launch(
const std::string& path, const std::vector<std::string>& args,
Pipe* inPipe, Pipe* outPipe, Pipe* errPipe)
creates a new process by launching the executable specified by
path and passing it the command line arguments given in args.

> Pointers to Poco::Pipe objects for the new process' standard
input, standard output and standard error channel can be
passed. If a non-null pointer is passed, the corresponding
channel will be redirected to the pipe.

> The same Pipe instance can be used for outPipe and errPipe.

Working with Pipes

> You usually do not work with Pipe objects directly. Although
you'll have to create instances of Pipe, for writing and reading
data from a pipe you use the Poco::PipeOutputStream and
Poco::PipeInputStream classes.

> #include "Poco/PipeStream.h"

> A Pipe is a unidirectional (half-duplex) communication channel,
which means that data only flows in one direction.

> You can either read from a Pipe, or write to a Pipe, but not both
with one instance.

#include "Poco/Process.h"
#include "Poco/PipeStream.h"
#include "Poco/StreamCopier.h"
#include <fstream>

using Poco::Process;
using Poco::ProcessHandle;

int main(int argc, char** argv)
{

std::string cmd("/bin/ps");
std::vector<std::string> args;
args.push_back("-ax");

Poco::Pipe outPipe;
ProcessHandle ph = Process::launch(cmd, args, 0, &outPipe, 0);
Poco::PipeInputStream istr(outPipe);

std::ofstream ostr("processes.txt");
Poco::StreamCopier::copyStream(istr, ostr);

return 0;
}

> POCO provides two primitives for inter process synchronization:

> Poco::NamedMutex (#include "Poco/NamedMutex.h")

> Poco::NamedEvent (#include "Poco/NamedEvent.h")

> Both are similar to the thread synchronization primitives
Poco::Mutex and Poco::Event.

> Both have a name, which is used to refer to the same operating
system managed mutex or event object from different processes.
The name must be passed to the constructor.

Inter Process Synchronization

NamedMutex Operations

> Poco::NamedMutex supports the same operations as
Poco::Mutex:

> void NamedMutex::lock()

> bool NamedMutex:: tryLock()

> void NamedMutex:: unlock()

> There also is a NamedMutex::ScopedLock available.

NamedEvent Operations

> Poco::NamedEvent only supports the following operations:

> void NamedEvent::set()

> void NamedEvent::wait()

Semantics

> Poco::NamedMutex and Poco::NamedEvent are merely references
to synchronization primitives managed by the operating system.

> This differs from the thread synchronization primitives:

> There can never be two separate Poco::Mutex instances that
refer to the same operating system mutex object.

> However, there can be multiple Poco::NamedMutex objects
referencing the same operating system mutex object.
Otherwise, inter thread synchronization would not be
possible.

Shared Memory

> Shared Memory support in POCO is implemented by the
Poco::SharedMemory class.

> #include "Poco/SharedMemory.h"

> A shared memory region can be created in two ways:

> a named memory region of a certain size can be created

> a file can be mapped into a shared memory region

The SharedMemory Class

> The begin() and end() member functions return a pointer to the
begin and one-past-end of the shared memory region,
respectively.

> The SharedMemory class is implemented using the Pimpl
(handle/body) idiom together with reference counting, thus
SharedMemory objects can be assigned and copied (although
nothing is copied physically).

// Map a file into memory

#include "Poco/SharedMemory.h"
#include "Poco/File.h"

using Poco::SharedMemory;
using Poco::File;

int main(int argc, char** argv)
{
 File f("MapIntoMemory.dat");
 SharedMemory mem(f, SharedMemory::AM_READ); // read-only access

 for (char* ptr = mem.begin(); ptr != mem.end(); ++ptr)
 {
 // ...
 }

return 0;
}

// Share a memory region of 1024 bytes

#include "Poco/SharedMemory.h"

using Poco::SharedMemory;

int main(int argc, char** argv)
{
 SharedMemory mem("MySharedMemory", 1024,
 SharedMemory::AM_READ | SharedMemory::AM_WRITE);

 for (char* ptr = mem.begin(); ptr != mem.end(); ++ptr)
 {
 *ptr = 0;
 }

return 0;
}

Copyright © 2006-2010 by Applied Informatics Software Engineering GmbH.
Some rights reserved.

www.appinf.com | info@appinf.com
T +43 4253 32596 | F +43 4253 32096

